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Field experiments were conducted to evaluate the potential of hyperspectral reflec-
tance data collected with a hand-held spectroradiometer to discriminate soybean
intermixed with pitted morningglory and weed-free soybean in conventional till and
no-till plots containing rye, hairy vetch, or no cover crop residue. Pitted morning-
glory was in the cotyledon to six-leaf growth stage. Seven 50-nm spectral bands (one
ultraviolet, two visible, four near-infrared) derived from each hyperspectral reflec-
tance measurement were used as discrimination variables. Pitted morningglory plant
size had more influence on discriminant capabilities than tillage or cover crop residue
systems. Across all tillage and residue systems, discrimination accuracy was 71 to
95%, depending on the size of pitted morningglory plants at the time of data
acquisition. The versatility of the seven 50-nm bands was tested by using a discrim-
inant model developed for one experiment location to test discriminant capabilities
for the other experiment, with discrimination accuracy across all tillage and residue
systems of 55 to 73%, depending on pitted morningglory plant size.

Nomenclature:  Hairy vetch, Trifolium incarnatum L.; pitted morningglory, po-
moea lacunosa L. IPOLA; rye, Secale cereale L.; soybean, Glycine max (L.) Merr.
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Weed populations are typically quite variable and spatially
aggregated in fields (Cardina et al. 1997; Medlin et al. 2001;
Van Groenendael 1988; Wiles et al. 1992). However, her-
bicides are often applied over entire fields to control weeds.
By developing herbicide application maps based on remotely
sensed data on weed distributions, herbicide(s) can be ap-
plied to only the weed patches and not entire fields. This
would help to reduce herbicide usage, cost, time required
for application, and off-site herbicide transfer (Cousens and
Woolcock 1987).

Multispectral remote sensing has been used with some
success for detecting weeds in row crops. Multispectral im-
agery has been used to discriminate late-season grass infes-
tations in soybean (Koger et al. 2003). Multispectral remote
sensing has also been used to discriminate experimental plots
of cotton (Gossypium hirsutum L.), sorghum (Sorghum bi-
color L.), johnsongrass [Sorghum halepense (L.) Pers.], and
Palmer amaranth (Amaranthus palmeri S. Wats.) (Menges et
al. 1985; Richardson et al. 1985). However, background soil
reflectance inhibited its ability to discriminate the plots
when plants were small in size, which is the time frame in
which most weed control decisions are made. Pitted mor-
ningglory and sicklepod [Senna obtusifolia (L.) Irwin and
Barnaby] infestations in soybean were detected by muldi-
spectral imagery with 90% accuracy when the weeds were
5 to 10 c¢m tall and at populations of at least 10 plants m—2
(Medlin et al. 2000). Detection accuracy, however, decreased
as weed populations fell below 10 plants m=? owing to an
increase in soil background reflectance. Weed populations
much lower than these often warrant herbicide treatment.
Populations (sicklepod or pitted morningglory) of 1 plant
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‘Asgrow 4702RR’.

Conventional tillage, discriminant analysis, no tillage, remote sensing.

m~2 are above the economic threshold and warrant treat-
ment (Rankins et al. 1998).

Multispectral sensors often collect data for several (3 to
7) broad bands from the visible (380 to 720 nm) to near-
infrared (720 to 1,300 nm) portions of the electromagnetic
spectrum (380 to 3,000 nm). These portions of the spec-
trum are the most affected by soil background reflectance
(Elvidge and Lyon 1985; Huete et al. 1985), thus limiting
the usefulness of multispectral data for making accurate as-
sessments of crop characteristics such as weed detection, wa-
ter stress, nutrient levels, and phenology (Moran et al.
1994). These limitations have sparked new interest in the
potential use of hyperspectral sensors, which collect more
spectral bands (36 to > 1,500) and often collect spectral
information from a wider range of the electromagnetic spec-
trum than multispectral sensors (Thenkabail et al. 2000).

Hyperspectral sensors often collect spectral data from the
visible to the mid- to thermal-infrared (1,300 to 3,000 nm)
portions of the electromagnetic spectrum (Thenkabail et al.
2000). Additionally, hyperspectral data are often collected
from narrower bands than multispectral data, thus resulting
in a finer spectral resolution for the collected bands. By
dividing the electromagnetic spectrum into more distinct
narrow bands, more data are available for making assess-
ments of crop and weed characteristics. Hyperspectral data
have been used successfully to estimate rice (Oryza sativa L.)
yield (Shibayama and Akiyama 1991), photosynthetic and
stomatal conductance in loblolly pine (Pinus taeda L.) and
slash pine (Pinus elliottii Engelm.) canopies (Carter 1998),
and physiological status of plants (Penuelas et al. 1993).
Litte is known about the potential use of hyperspectral data
for early-season weed detection in row crops.



TasLe 1. Biomass of cover crop residue in different tillage and residue systems at Starkville and Stoneville.

. No-till Till
Pitted
morningglory Hairy vetch Hairy vetch
growth stage No cover crop Rye cover crop cover crop No cover crop Rye cover crop cover crop
no. of leaves kg ha-!
Starkville
Cotyledon-2 45 1,610 70 25 425 40
2-4 35 1,310 50 20 320 15
4-6 25 925 40 10 270 10
Stoneville
Cotyledon-2 75 5,600 100 75 580 30
24 70 4,895 80 60 400 25
4-6 35 4,160 65 45 380 30

There is lictle known about the influence of plant residue
and background soil reflectance in no-till and conventional
tillage systems on weed detection capabilities. Daughtry et
al. (1995) found cover crop residue, along with soil back-
ground reflectance, to interfere with reflectance of crop and
weed vegetation, which can influence weed detection in
crops. Wheat (Triticum aestivum L.) plants were differenti-
ated from standing wheat stubble, bare soil, and incorpo-
rated wheat stubble by spectral data collected with a hand-
held hyperspectral radiometer that corresponded to LAND-
SAT multispectral bands (Aase and Tanaka 1984). However,
these plots were weed free, so inferences regarding differ-
entiation of weeds from crop by remote sensing were not
possible.

With this in mind, the objective of this research was to
identify and evaluate a select number of bands from hyper-
spectral data derived over a wide range of the electromag-
netic spectrum (350 to 2,500 nm) for discriminating soy-
bean intermixed with pitted morningglory and weed-free
soybean across a wide range of pitted morningglory growth
stages and background soil reflectance environments. It is
more economically feasible to develop a weed detection sen-
sor for a variety of tillage and residue systems rather than
one limited to one or a few types of tillage—residue systems.
Also, information regarding type of tillage and residue sys-
tem may not always be known, so a sensor capable of de-
tecting weeds across a range of environments would be more
useful than one good for only a select few environments.
Pitted morningglory was the only weed species evaluated in
this research because it is a troublesome weed species in row
crop production and so that the reflectance measurements
for weeds in each weed-infested plot could be consistent and
maintained more easily than that for a conglomerate of weed
species.

Materials and Methods
Experiment Procedures

Field experiments were conducted in 2001 at the USDA-
ARS Southern Weed Science Research Unit, Stoneville, MS,
and the Plant Science Research Center, Starkville, MS. The
soil types were a Dundee silt loam (fine-silty, mixed, ther-
mic, Aeric Ochraqualf) with a pH of 6.3 and 1.1% organic
matter at Stoneville and a Marietta fine sandy loam (fine-
loamy, mixed, thermic, siliccous Aquic Fluventic Eutro-
chrept) with a pH of 6.0 and 1.4% organic matter at Stark-

ville. Each experiment was arranged in a randomized com-
plete block with a split—split plot factorial arrangement of
treatments. Each treatment was replicated four times. Sub-
subplot size was 4.5 by 12.0 m. The main plot factor was
cover crop residue. Residues of native vegetation, ‘Maton’
rye, and hairy vetch were evaluated in till and no-till sub-
plots. The absence or presence of pitted morningglory at a
specific density was the sub-subplot factor and was evaluated
in each residue by tillage combination.

Rye and hairy vetch seed were drilled at 90 and 45 kg
ha~!, respectively, in 19-cm-wide rows in mid-October of
2000. The following spring (mid-April), existing vegetation
in all plots was desiccated with 1.1 kg ai ha™! paraquat.
After desiccation, the tillage plots were tilled with a disk
harrow and a field cultivator to thoroughly incorporate the
plant residue before soybean planting. Desiccated plant res-
idue was left undisturbed in no-till plots. Glyphosate-resis-
tant soybean cultivar ‘Asgrow 4702 RR’ was planted on May
8, 2001, at Starkville and May 11, 2001, at Stoneville in
57-cm-wide rows in all plots. At planting, additional flushes
of weeds and cover crop regrowth in all plots were desiccated
with paraquat (1.1 kg ha™!). A 3.0- by 3.0-m plastic tarp
was placed in the center of designated plots to establish
pitted morningglory. Preemergence application of 2.25 kg
ai ha™! metolachlor plus 0.14 kg ai ha~! imazaquin was
done to control other weeds in all plots except the quadrat
areas designated for pitted morningglory establishment.
Tarps were then removed, and pitted morningglory seed,
purchased from a local seed vendor,! was planted in nine
1.0-m? quadrats in the center of each soybean intermixed
with pitted morningglory plot. Once emerged, pitted mor-
ningglory populations were thinned to 4 plants per 1.0-m?
quadrat. This density was maintained throughout the du-
ration of the experiment by hand weeding excess pitted mor-
ningglory and other weeds as needed. Because of excessive
amounts of rye residue in the no-till-rye residue system at
Stoneville (Table 1), no pitted morningglory emerged; thus,
data were not collected from these plots. All weeds in plots
not containing pitted morningglory (weed free) and weeds
outside the center 3.0- by 3.0-m sampling area in soybean
intermixed with pitted morningglory plots were controlled
with 1.1 kg ai ha~! glyphosate as needed. Soybean and pit-
ted morningglory emergence at Starkville was poor because
of dry conditions at time of planting. Thus, existing vege-
tation was killed with 1.1 kg ha! paraquat, and soybean
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TasLe 2. Pitted morningglory and soybean growth stage, height, and ground cover estimates in soybean plus pitted morningglory and

weed-free soybean plots at Starkville and Stoneville.

Soybean plus pitted morningglory

Weed-free soybean

Pitted morningglory Soybean Soybean
Growth Ground Growth Ground Growth Ground
stage Height cover stageP Height cover stageP Height cover
no. of leaves cm % no. of leaves % no. of leaves cm %
Starkville
Coty.—2 5-8 25 2-3 5-15 28 2-3 7-14 32
2-4 5-10 30 3-4 9-16 30 34 12-16 34
4-6 8-12 38 4-6 22-29 36 4-6 23-27 39
Stoneville
Coty.—2 2-8 22 24 7-18 35 2-4 8-16 37
24 2-15 35 3-6 9-20 40 3-6 10-22 45
4-6 5-20 35 5-8 15-25 51 5-9 13-28 58

2 Abbreviation: Coty., cotyledon.
b Number of trifoliolate leaves.

and pitted morningglory seed were replanted on May 21
using the same procedures described previously.

Hyperspectral Data Acquisition

Beginning when soybean plants had two to three true
leaves and pitted morningglory was in the cotyledon to two-
leaf growth stage, hyperspectral reflectance measurements
were collected using a portable spectroradiometer.? Reflec-
tance is the ratio of energy reflected off the target (i.e., plant
and background soil-residue) to energy incident on the tar-
get, which was measured using a BaSO4 white reference.
Hyperspectral reflectance measurements were collected be-
tween 350 and 2,500 nm, resulting in 2,151 individual
spectral bands for each hyperspectral reflectance measure-
ment, with a bandwidth of 1.4 nm between 350 and 1,050
nm and 1.0 nm between 1,051 and 2,500 nm. Eight hy-
perspectral reflectance measurements were collected for soy-
bean plus background soil-residue in each weed-free soy-
bean plot. Eight measurements of soybean intermixed with
pitted morningglory plus background soil-residue were also
collected from each soybean intermixed with pitted mor-
ningglory plot. Hyperspectral measurements were collected
using a 23° field-of-view optic, and the sensor was held 122
cm directly above the object of interest. This resulted in
approximately 0.25-m spatial resolution for each hyperspec-
tral measurement. The background reflectance of soil, resi-
due, and soil intermixed with residue was included in each
reflectance measurement. Hyperspectral reflectance data
were collected at each location using the same procedures
when pitted morningglory plants were in the two- to four-
leaf and four- to six-leaf growth stages. Cover crop residue
and native vegetation (no cover crop residue system) bio-
mass estimates in each tillage system, growth stage and
height of soybean and pitted morningglory, and percent vi-
sual ground cover estimates for pitted morningglory and
soybean were also recorded (Tables 1 and 2) at each location
when hyperspectral reflectance measurements were collected.

Data Analysis

Using the forward selection procedure in stepwise dis-
criminant analysis (Franz et al. 1991), the 10 individual (1.0
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or 1.4 nm) bands having the greatest power for discrimi-
nating soybean intermixed with pitted morningglory and
weed-free soybean in each tillage, residue, and pitted mor-
ningglory growth stage combination were selected for each
location (Table 3). Hyperspectral response measurements
(350 to 2,500 nm) were divided into forty-three 50-nm
bands. However, 50-nm bands in the mid-infrared portion
centered at 1,375, 1,425, 1,825, 1,875, and 1,925 nm co-
incide with atmospheric water absorption bands, from
which little energy is reflected from green vegetation because
most energy is absorbed by water (Hatfield and Pinter
1993). Excessively hot daytime temperatures (34 = 2 C)
caused the sensor that collects data between 2,300 and
2,500 nm to overheat, causing reflected energy for the bands
centered at 2,425 and 2,475 nm to be background noise
from the sensor or stray light and not reflected energy from
plant material (Goetz et al. 1983). Thus, the 50-nm bands
centered at 1,375, 1,425, 1,825, 1,875, 1,925, 2,425, and
2,475 nm were not considered for the forward selection pro-
cedure in discriminant analysis. Dissecting extraneous por-
tions of large hyperspectral data sets into reduced portions
applicable for making crop-related inferences has been re-
searched previously. Haertel and Landgrebe (1999) reduced
220-band airborne visible—infrared imaging spectrometer
(AVIRIS) data into 5- to 30-band data sets used to classify
tillage patterns of corn and soybean in Indiana. In their
research, dissecting multidimensional hyperspectral data into
reduced portions provided similar levels of classification ac-
curacy as that of the entire sets, all the while reducing the
entire data sets to smaller, more manageable sets.

The best 50-nm bands of a possible 36 for discriminating
weed-free soybean and soybean intermixed with pitted mor-
ningglory were selected based on where the most individual
(1.0 or 1.4 nm) bands, selected in the stepwise procedure,
were located within the spectrum (Table 3). This stepwise
discriminant-based selection procedure has also been used
to identify bands from thermatic mapper simulator data that
could be used to classify forest land-cover classes (Nelson et
al. 1984). The seven selected 50-nm bands for each reflec-
tance measurement were subjected to Fisher’s linear discrim-
inant analysis (Franz et al. 1991) to determine discrimina-
tion accuracy for soybean intermixed with pitted morning-



TasLe 3. The number of individual 1.0- or 1.4-nm bands selected
within each 50-nm band for discriminating soybean intermixed
with pitted morningglory and weed-free soybean in all tillage—res-
idue systems and pitted morningglory growth stages at Starkville
and Stoneville.

No. of individual
bands selected®

Center of each
50-nm spectral band

375 45b
425 28b
475 8
525 9
575 20b
625 6
675 6
725 26b
775 10
825 7
875 7
925 28b
975 24b
1,025 6
1,075 7
1,125 22b
1,175 6
1,225 5
1,275 6
1,325 6
1,475 6
1,525 6
1,575 5
1,625 2
1,675 2
1,725 1
1,775 5
1,975 4
2,025 5
2,075 6
2,125 3
2,175 3
2,225 1
2,275 1
2,325 1
2,375 5

2 Individual 1.0- and 1.4-nm bands selected with stepwise discriminant
analysis at the P = 0.15 level of significance.

b The 50-nm band selected as discrimination variable to discriminate
soybean intermixed with pitted morningglory and weed-free soybean.

glory and weed-free soybean in each tillage and residue sys-
tem and pitted morningglory growth stage. To test the
versatility of the selected 50-nm bands at each growth stage,
linear discriminant models developed for one experiment
were applied to the data collected from the other experi-
ment. All bands were selected at the P = 0.15 level of sig-
nificance in the stepwise discriminant analysis procedure. All
analysis procedures were conducted in SAS,? and cross-val-
idation summaries of discrimination results were used in all
scenarios.

Results and Discussion
Seven 50-nm bands (375, 425, 575, 725, 925, 975, and

1,125 nm) were selected to discriminate weed-free soybean
and soybean intermixed with pitted morningglory in the
different tillage and residue systems based on where the most

individual (1.0 or 1.4 nm) bands were located in the elec-
tromagnetic spectrum (Table 3). Number of individual (1.0
or 1.4) bands selected from the seven selected 50-nm bands
ranged from 20 to 45 compared with 1 to 10 individual
bands for the remaining 28 50-nm bands. One 50-nm band
was selected from the ultraviolet (30 to 400 nm), two from
the visible (400 to 700 nm), and four from the near-infrared
(700 to 1,300 nm) portion of the spectrum (Figure 1). Most
energy in the ultraviolet and visible portions of the spectrum
is absorbed by plants and used to drive photosynthesis pro-
cesses. However, differences in leaf pigments, primarily chlo-
rophylls, carotenoids, xanthophylls, and anthocyanins for
these spectral regions have been used to differentiate plant
species (Gates et al. 1965; Thenkabail et al. 2000). Differ-
ences in internal cellular structure have also been used to
differentiate species by spectral characteristics (Thenkabail
et al. 2000).

Discriminant Capabilities of 50-nm Bands across
Tillage and Residue Systems

Soybean intermixed with pitted morningglory and weed-
free soybean spectral data for the seven 50-nm bands were
pooled across all tillage and residue systems for each pitted
morningglory growth stage. Pitted morningglory and soy-
bean growth stage affected discrimination capabilities more
than tillage or cover crop residue because discriminant ac-
curacy at both locations increased with increasing plant size
of pitted morningglory and soybean (Table 2). Overall dis-
crimination accuracy for soybean intermixed with pitted
morningglory and weed-free soybean was 71 and 73% at
Starkville and Stoneville at the cotyledon to two-leaf pitted
morningglory growth stage, compared with 80 and 75% at
the two- to four-leaf stage and 95 and 86% at the four- to
six-leaf stage, respectively (Table 4). Increased discriminant
capabilities with increasing plant size is possibly due to less
soil-residue background reflectance with increasing plant
size of pitted morningglory and crop maturity.

The discriminant model developed for the seven 50-nm
spectral bands (discrimination variables) in one experiment
was used to test discriminating capabilities across all tillage
and residue systems in the other experiment. Overall, dis-
criminant capabilities increased only slightly as pitted mor-
ningglory growth stage increased, with 55 and 57% correct
discrimination of soybean intermixed with pitted morning-
glory and weed-free soybean at the cotyledon to two-leaf
growth stage, compared with 62 to 73% by the four- to six-
leaf stage (Table 4). Reduced discriminant capabilities when
using discriminant models from one data set to test another
may be due to substantial differences in residue biomass for
the different systems at time of data acquisition at the two
locations (Table 1). Versatility of a sensor used for weed
detection across a range of environments (tillage and cover
crop residue) may be determined by its ability to discrimi-
nate weeds from crop using discriminant models developed
from other data sets. Information regarding tillage system
and the presence of cover crop residue may be available in
some cases. Therefore, investigation of weed discriminant
capabilities when information regarding the type of tillage
and residue system is available may further reveal the diver-
sity and usefulness of the seven 50-nm bands for weed dis-
crimination.
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Ficure 1. Seven 50-nm bands used to discriminate weed-free soybean and soybean intermixed with pitted morningglory at Starkville and Stoneville.
Reflectance measurements for weed-free soybean and soybean intermixed with pitted morningglory were averaged across tillage, residue, pitted morningglory

growth stages, and experiments.

Effect of Tillage and Cover Crop Residue

Tillage and cover crop residue had less effect than pitted
morningglory growth stage on discrimination capabilities
when discriminant models were used within each experi-
ment. When pooled across residue systems, overall correct
discrimination accuracy for soybean intermixed with pitted
morningglory and weed-free soybean in the till and no-till
systems was 63 to 79% at Starkville and Stoneville when
pitted morningglory was in the cotyledon to two-leaf growth
stage, compared with 85 to 96% at the four- to six-leaf
growth stage (Table 5). When pooled across tillage systems,
discrimination accuracy increased for all cover crop residue
systems as pitted morningglory plant size increased (Table
6).
When using discriminant models developed for the other
experiment across tillage (pooled across residue) and residue
(pooled across tillage) systems, soybean intermixed with pit-
ted morningglory and weed-free soybean were classified ac-
curately 46 to 61% in till and no-till systems (Table 5) and
43 to 64% in residue systems (Table 6) at the cotyledon to
two-leaf growth stage. However, by the four- to six-leaf

growth stage, discrimination accuracy was 82 to 92% in the
till and no-till systems and 64 to 94% in the residue sys-
tems. Maintaining high levels of discriminant capabilities
when information regarding the type of tillage and residue
is available, and while pitted morningglory is still small
enough to be controlled with herbicide, provides evidence
of the potential of the 50-nm bands with respect to weed
detection capabilities when information regarding the back-
ground soil-residue environment is available. Accurate dis-
crimination of weed-free crop and crop intermixed with
weeds when type of tillage—residue system is known also
sheds light on the need for investigating the seven bands in
an aerial- or satellite-based sensor. Reflectance data collected
for these seven spectral bands may have more discriminatory
power if information regarding the specific tillage—residue
system is available.

Discriminant Capabilities within Each Tillage—
Residue System

Pitted morningglory growth stage had more influence on
discrimination capabilities than type of tillage—residue sys-

TasLe 4. Overall discrimination accuracy for soybean intermixed with pitted morningglory and weed-free soybean when pooled across
tillage and residue systems for each pitted morningglory growth stage using the discriminant model developed within each experiment

and for the other experiment.?

Correct discrimination using
the discriminant model

Pitted developed within experiment

morningglory

Correct discrimination for Stark-
ville data using the discriminant

Correct discrimination for Stone-
ville data using the discriminant

growth stage Starkville Stoneville model developed for Stoneville model developed for Starkville
no. of leaves %

Cotyledon—2 71 73 55 57

24 80 75 55 65

46 95 86 73 62

2 All discriminant analyses were performed using the seven 50-nm bands as discrimination variables pooled across tillage and residue systems.
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TasLe 5. Overall discrimination accuracy for soybean intermixed with pitted morningglory and weed-free soybean in till and no-till
systems for each pitted morningglory growth stage using the discriminant model developed within each experiment and for the other

experiment.?

Correct discrimination using
the discriminant model

Pitted developed within location

morningglory

Correct discrimination for Stark-
ville data using the discriminant

Correct discrimination for Stone-
ville data using the discriminant

growth stage Starkville Stoneville model developed for Stoneville model developed for Starkville
no. of leaves %
Till
Cotyledon-2 76 79 55 61
2-4 74 81 78 80
4-6 96 85 85 92
No-till
Cotyledon-2 63 78 55 46
2-4 72 83 78 77
4-6 90 91 82 83

@ All discriminant analyses were performed within tll and no-till systems using the seven 50-nm bands as discrimination variables pooled across residue

systems.

tem. Discrimination accuracy for soybean intermixed with
pitted morningglory and weed-free soybean was 56 to 84%
at Starkville and 75 to 86% at Stoneville (Table 7) for all
tillage—residue combination systems when pitted morning-
glory was in the cotyledon to two-leaf growth stage. Dis-
crimination accuracy was 87 to 97% by the four- to six-leaf
stage. Better discrimination of pitted morningglory beyond
the cotyledon to two-leaf growth stage may be attributed to
less soil-residue background reflectance. Ground cover es-
timate for vegetation (soybean plus pitted morningglory) in
soybean intermixed with pitted morningglory plots at the
four- to six-leaf pitted morningglory growth stage was 74%
at Starkville and 86% at Stoneville (Table 2), whereas, veg-
etation ground cover estimates of pitted morningglory at the
cotyledon to two-leaf growth stage were 53 and 57% at
Starkville and Stoneville, respectively.

Discrimination accuracy in the different tillage and resi-
due systems when using discriminant models developed for
each tillage—residue combination system at one experiment
to test the other experiment increased as pitted morningglo-
ry plant size increased for all tillage and residue systems
except the till-rye residue system, where discrimination ac-
curacy was lower at the two- to four-leaf growth stage than
in the other tillage—residue systems. This low level of ac-
curacy is attributed to differences in rye residue biomass on
the soil surface between the two experiments. This differ-
ence in biomass may have caused differences in background
reflectance in the tll-rye residue plots in the two experi-
ments. Discrimination accuracy by the four- to six-leaf pit-
ted morningglory growth stage was 84 to 90% and increased
only slightly compared with the two- to four-leaf stage in
the no-till-no cover crop and hairy vetch residue systems
and the till-no cover crop residue systems (Table 7).

The seven 50-nm bands investigated in this study proved
to be versatile for detecting pitted morningglory in a variety
of tillage and residue systems at growth stages controllable
with most labeled postemergence herbicides. Knowing the
specific tillage—residue system improved discriminant capa-
bilities because discrimination accuracy was higher within
each tillage—residue system than by pooling across all tillage—
residue systems. Discrimination capabilities were influenced
more by weed growth stage than tillage and presence or

absence of cover crop residue. This may be advantageous
with respect to weed detection capabilities because little can
be done about the amount of biomass residue on the soil
surface or the type of tillage and cover crop residue system
after crop and weed emergence. However, limited scouting
can be used to identify the weed size that will potentially
result in the best weed detection capabilities by remote sens-
ing.

Using a limited number of 50-nm bands rather than all
individual (1.0 and 1.4 nm) bands allows for a reduction in
the spectral data by eliminating those bands that are not
useful as discriminant variables. Another potential benefit of
using broad 50-nm bands rather than narrow, individual
(1.0 or 1.4 nm) bands to discriminate weeds from crop is
that fewer spectral bands are needed, thus sensor costs could
be reduced. Also, broad bands (10 to 70 nm in width) col-
lected from the visible and near-infrared portions of the
spectrum have proven to be more successful than narrow
bands for making inferences toward crop growth factors
(Thenkabail et al. 2000). Therefore, sensors collecting spec-
tral data in fewer bands, but across similar regions of the
spectrum, may be cheaper and as useful for detecting weeds
as sensors that collect data from many narrow spectral
bands.

Overall, the ability to detect pitted morningglory inter-
mixed with crop vs. weed-free crop studied here is compa-
rable with work conducted by Medlin et al. (2000), who
used aerial multispectral data to classify infestations of pitted
morningglory with at least 85% accuracy. However, popu-
lations had to reach 10 plants m~2 before these accuracy
levels were reached, and the soil was conventionally tilled
before planting, so the soil background reflectance was con-
sistent, whereas background reflectance varied across the dif-
ferent tillage and residue systems in this study. Detection of
small weeds is also very promising because this is the time
frame in which weed control is most crucial for minimizing
the impact on crop yield (Barrentine 1974; Bloomberg et
al. 1982). Further research is needed on these selected bands
for detecting different weeds and weed complexes and other
agricultural parameters such as soil characterization and de-
tection of insect and water stress. In addition, research is
needed to address what factor(s), such as differences in veg-
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Tasre 6. Overall discrimination accuracy for soybean intermixed with pitted morningglory and weed-free soybean in each cover crop
residue system for each pitted morningglory growth stage using the discriminant model developed within each experiment and for the
other experiment.?

Correct discrimination using
the discriminant model

Pitted f : Correct discrimination for Stark- Correct discrimination for Stone-
. developed within location . . Lo ) . .
morningglory ville data using the discriminant ville data using the discriminant
growth stage Starkville Stoneville model developed for Stoneville model developed for Starkville

no. of leaves %
No cover crop residue
Cotyledon-2 68 74 46 54
2-4 87 81 72 74
4-6 98 87 85 87
Rye residue
Cotyledon-2 75 64P 43b 53b
24 83 710 51b 62b
4-6 94 78b 64 84b
Hairy vetch residue
Cotyledon—2 72 74 51 64
2-4 83 83 77 88
4-6 97 85 86 94

2 All discriminant analyses were performed within each cover crop residue system using the seven 50-nm bands as discrimination variables pooled across
tillage systems.
b Till plots only, pitted morningglory did not emerge in no-till plots at Stoneville.

TasLe 7. Overall discrimination accuracy for soybean intermixed with pitted morningglory and weed-free soybean in each tillage by cover
crop residue system for each pitted morningglory growth stage using the discriminant model developed within each experiment and for
the other experiment.?

Correct discrimination using
the discriminant model

Pitted developed wichin locari Correct discrimination for Stark- Correct discrimination for Stone-
. eveloped within location . . L ) . Lo

morningglory ville data using the discriminant ville data using the discriminant
growth stage Starkville Stoneville model developed for Stoneville model developed for Starkville
no. of leaves %
No-till-no cover crop residue

Cotyledon—2 74 76 57 48

2-4 82 84 85 91

4-6 97 90 84 90
Till-no cover crop residue

Cotyledon-2 77 82 48 36

2-4 83 85 74 93

4-6 91 93 87 84
No-till-rye residue

Cotyledon-2 56 —b —b —b

2-4 80 —b _b _b

4-6 92 —b _b _b
Till-rye residue

Cotyledon—2 83 75 57 70

2-4 87 85 64 56

4-6 90 87 85 80
No-till-hairy vetch residue

Cotyledon-2 84 86 56 61

2-4 89 88 88 90

4-6 96 87 90 89
Till-hairy vetch residue

Cotyledon-2 81 79 52 41

2-4 88 85 90 90

4-6 96 88 85 90

@ All discriminant analyses were performed within each tillage—cover crop residue system using the seven 50-nm bands as discrimination variables.
b Pitted morningglory did not emerge in no-till plots at Stoneville.
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etation ground cover between different plots or differences
in reflectance patterns between pitted morningglory and
soybean, affect the ability to discriminate weed-infested crop
from weed-free crop.

Sources of Materials

! Pitted morningglory seed, Azlin Seed Service, PO. Box 914,
Leland, MS 38756.

2 Spectroradiometer, FieldSpec Pro. Analytical Spectral Devices
Inc., 5335 Sterling Drive, Boulder, CO 80301-2344.

3 SAS, SAS Institute Inc., SAS Campus Drive, Cary, NC 27513.
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